

EPC C1 Gen2 UHF RFID IC Fully-Passive Sensor Monitoring

Description

AS3213 is an EPCTM Class-1 Generation-2 compliant IC for UHF RFID applications. The chip offers advanced performance in sensor acquisition mode, due to an ultra-low power internal acquisition channel. It can be powered either by a battery or by the RF energy transmitted from a reader. In a Battery Assisted Passive (BAP) configuration, the AS3213 offers an increased reading range compared to passive RFID solutions.

AS3213 embeds 512 bits of low power non-volatile memory (EEPROM) that is organized in 4 banks as described in EPC Gen 2 standard. The chip supports the EPC data structure which is compliant with the EPC Global Tag Data Standards, Version 1.10, and is delivered with a Unique Identifier (UID) to ensure full traceability.

The chip integrates an acquisition channel and biasing circuitry for external sensors, including an onchip amplifier suitable for resistive bridge, voltage and capacitive sensor measurements, and a 10-bit Analog to Digital Converter (ADC). In addition to the acquisition channel, AS3213 features internal sensors, allowing single-chip measurements. The set of available internal sensors includes an on-chip temperature sensor, an Ambient Light Sensor, a strain sensor, an electrical continuity sensor and a Hall effect sensor.

The chip supports a temperature range from -40°C to +120°C.

All features are available either in passive or BAP mode. Sensor data are available on demand by a reader using a simple read command in user memory as defined in EPC protocol. There is no need for any custom command or pre-charge sequence. It is fully compliant with standard readers.

AS3213 also provides digital interface for advanced applications such as machine to machine communication. It is made by a standard slave SPI and offers programmability and functionality setup. It also allows to trig data acquisition through the internal digital interface. Both the RF interface and the SPI bus provide the same functions.

1

Features

- ✓ EPC Gen2 compliant
- ✓ Fully passive
- √ 512 bits non-volatile memory (EEPROM)
- √ 48-bit manufacturer programmed IC Serial Number
- √ 192 bits for UII/EPC encoding
- √ 32 bits for User data
- √ 64 bits Configuration Register Data in SPI mode
- √ Forward link data rates: 26.7 to 128 kbps assuming equiprobable data
- ✓ Return link data rates: 40 to 640 kbps with subcarrier modulated data rates of 0.625 to 320 kbps
- ✓ Integrated amplifier and ADC for resistive and capacitive external sensor data monitoring
- ✓ Integrated sensors: temperature, ALS, strain, electrical continuity, Hall
- √ 32 bits for chip configuration stored in Reserved memory accessible from both RF and SPI channel
- ✓ Serial Peripheral Interface (SPI) Bus
- ✓ Battery assistance for increasing reading range
- ✓ Regulated power supply
- ✓ Extended temperature range: -40°C to +120°C

Applications

- ✓ Condition monitoring (pressure, temperature, humidity, strain, vibration...)
- ✓ Supply chain management, tracking and tracing
- ✓ Cold chain monitoring
- ✓ Sensor monitoring

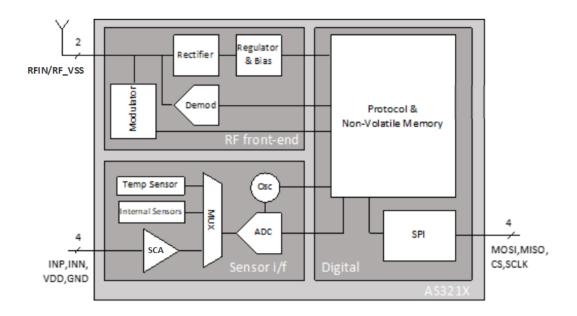
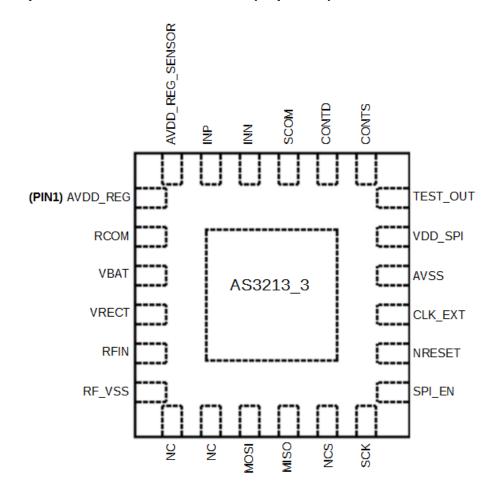
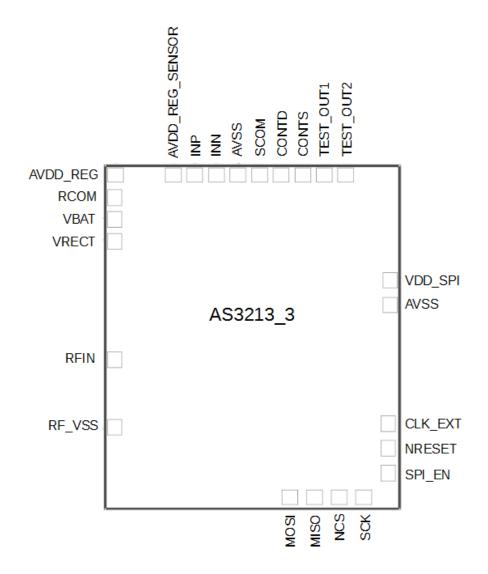


Table of Content


Description	
Features	2
Applications	
Table of Content	3
Block Diagram	
Pin Description: QFN24 4x4mm 0.5mm (Top View)	4
Pin Description: Bare Die 1680µmx1440µm (Top View)	6
Typical Application	
Specification	8
Absolute Maximum Ratings	8
Operating Conditions	
Electrical Characteristics at 25°C	9
RF Characteristics @25°C	10
NVM Characteristics	11
I/O DC Characteristics	11
Temperature Sensor Characteristics	12
Acquisition Channel Characteristics	12
Functional Description	13
EPC Optional Features supported	14
Memory Map	15
Configuration Definition	16
Config0 - EPC bank address 0xE (14)	17
Config1 - EPC bank address 0xF (15)	18
Config2 - EPC bank address 0x10 (16)	
Sensor and Temperature Data	
SPI Interface	21
SPI Mode	21
SPI Bus	21
SPI register map	22
SPI Commands	22
WRITE	22
READ	23
RDSR	23
WRITE_REG	23
READ REG	23
SPI Protocol	23
Package information	
Bare Dies Information	
Bumps (DXF available on demand)	
Product Support	

Block Diagram

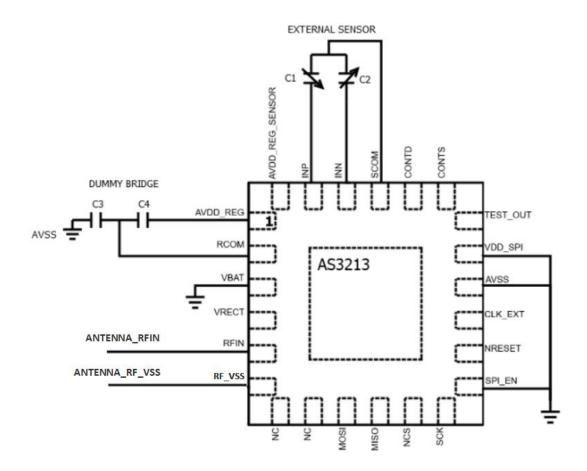
Pin Description: QFN24 4x4mm 0.5mm (Top View)



Pin	Name	Type	I/O	Description
1	AVDD_REG	Α	0	1.0V Regulated Power Supply
2	RCOM	Α	ı	External capacitive sensor common reference input
3	VBAT	Α	- 1	External Power Supply in BAP operation [1.8V;2.5V] (*)
3	VBAT	Α .	•	Need to be connected to AVSS in passive operation
4	VRECT	Α	0	Non-Regulated Power Supply from RF field [1.2V;2.0V]
5	RFIN	RF		Antenna input
6	RF_VSS	Α	ı	For antenna connection only (ground)
7	NC	NA		Not Connected
8	NC	NA		Not Connected
9	MOSI	D	ı	1.8V SPI MOSI signal
10	MISO	D	0	1.8V SPI MISO signal
11	NCS	D	ı	1.8V SPI Chip Select
12	SCK	D	ı	1.8V SPI Clock signal
13	SPI_EN	D	ı	1.8V SPI Enable signal
14	NRESET	D		1.8V external reset for digital part in SPI mode (SPI_EN="1")
15	CLK_EXT	D		External clock for digital part in SPI mode (SPI_EN="1")
16	AVSS	Α	I	Ground of the IC
17	VDD_SPI	Α	ı	SPI 1.8V Power supply
18	TEST_OUT	Α	I/O	Analog test pin for input and output
19	CONTS	Α	ı	Continuity sensor sense input
20	CONTD	Α	0	Continuity sensor drive output
21	SCOM	Α	ı	External capacitive sensor common sensing input
22	INN	Α	ı	Negative input for external sensor, R or C (differential)
23	INP	Α		Positive input for external sensor, R or C (differential)
24	AVDD_REG_SENSOR	Α	0	1.0V External Sensor Power Supply

A: Analog, D: Digita (*) For write operation in the NVM, the power supply needs to be higher than 2.2V.

Pin Description : Bare Die 1680µmx1440µm (Top View)


DXF files are available upon request.

Typical Application

External differential capacitive sensor in passive operation (for sensors with a capacitance larger than 3pF).

The operation requires the connection of the sensor to a reference capacitive bridge. For sensors with a capacitance under 3pF the reference bridge is fully integrated on-chip, but for sensors with a larger capacitance (>3pF) an external dummy bridge is required, as illustrated on below application schematic.

In passive mode, the needed energy is provided by the RF field. The external power supply pin VBAT needs to be connected to AVSS to avoid active mode to turn on. It is recommended (not mandatory) to connect VDD_SPI to AVSS too, to avoid any unwanted activation of the SPI mode. By the same way, it is recommended to connect SPI_EN to AVSS, but this is not mandatory because it is pulled down internally. NRESET, EXT_CLK and the SPI inputs can be left floating (internal pull down too).

More application schematics are available upon demand as Application Notes. Some of them can be found on the following website: https://as321x.asygn.com/

Please, refer to AS321X AN07 application note to find some additional information about the use of an external capacitive sensor with AS3213 chip.

Specification

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit
Storage Temperature	Tstorage	-40	120	°C
Voltage on all pads/pins except AVSS	Vpin	0	3.3	V
RF power into pad/pin RFIN	Pmax		15	dBm
Electrostatic discharge on all pads except RFIN	VESD	-1000	1000	V
Electrostatic discharge on RFIN	VESD_RF	-500	500	V

ESD are Human Body Model (HBM) values

Stresses above these listed maximum ratings may cause permanent damages to the device. Exposure beyond specified operating conditions may affect device reliability or cause malfunction.

Operating Conditions

Parameter	Symbol Min.		Max.	Unit
Operating temperature	Toperating	-40	+120	°C
Max RF power at RFIN	Pmax_op		15	dBm
RF carrier frequency	Fcarrier	860	960	MHz

Electrical Characteristics at 25°C

Parameter	Symbol	Min.	Тур.	Max.	Unit
Battery voltage for EEPROM read operation	Vread	0.9		3.3	V
Battery voltage for EEPROM power check, erase, and write operations	Vwrite	1.8		3.3	٧
Average battery current in Sleep mode (No RF applied to the antenna)	Isleep		3.8		uA

RF Characteristics @25°C

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
		Die form @ Pin=-10dBm				
		Fcarrier = 866MHz		7-j406		Ω
Input Impedance		Fcarrier = 915MHz		8.5-j383		Ω
input impedance	Zin_passive	QFN24 @ Pin=-10dBm				
		Fcarrier = 866MHz		23-j213		Ω
		Fcarrier = 915MHz		30-j195		Ω
		Die form @ Pin=TBD				
		Fcarrier = 866MHz		NA		Ω
Input Impedance in BAP mode	Zin_bap	Fcarrier = 915MHz		NA		Ω
input impedance in BAF mode	ZIII_bap	QFN24 @ Pin=				
		Fcarrier = 866MHz		NA		Ω
		Fcarrier = 915MHz		NA		Ω
Write sensitivity in passive	Pwrite_passive			-12		dBm
Read sensitivity in passive	Pread_passive			-13		dBm
Read sensitivity in passive		with 3pF external sensor		-12		dBm
mode with internal or external sensor	Pread_sensor	capacitance				
Write sensitivity in BAP	Pwrite_bap	VBAT=2.2V		-16		dBm
Read sensitivity in BAP	Pread_bap	VBAT=2.2V		-16		dBm

NA: Not Available. Waiting for measurement data.

NVM Characteristics

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Erase / write endurance	Tcyc	Worst Case	10,000			Cycles
Retention	Tretention	T = 85°C	10			Years

I/O DC Characteristics

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
MOSI, MISO, SCLK, NCS, SPI_EN, EXT_CLK, NRESET						
Input Low Voltage	VIL		0		0.3*VDD_SPI	٧
Input High Voltage	VIH		0.7*VDD_SPI		VDD_SPI	V
IOL	IOL	VBAT = 2.0V; VDD_SPI=1.8V		TBD		mA
ЮН	IOH	VBAT = 2.0V; VDD_SPI=1.8V		TBD		mA
Input pull-down	Rpulldown			100K		Ohm

Temperature Sensor Characteristics

NOTE: Toperating: -40°C to 120°C

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Temperature Range	Trange		-40		120	°C
Resolution	Res			±0.35		°C
Measurement time	Tmeas			137		μs
Accuracy after calibration	Acc			±0.7		°C
RF Sensitivity in passive mode operation for temp sensor	Ptemp			-13		dBm

Acquisition Channel Characteristics

NOTE: At temp=25°C

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Temperature Range	Trange		-40		120	°C
Resolution	ADC_Res			10		bits
Measurement time	Tmeas		75	150	600	μs
Accuracy after calibration	Acc			1		LSB
Number of samples	Nsmpl		1	1	8	
Sampling Frequency	Fsmpl		20	80	160	kHz
Amplifier Gain	SCAgain		1	20	70	Nat
Offset				<1		LSB
RF Sensitivity in passive mode operation for external sensor acquisition	Psense			-12		dBm

Functional Description

The AS3213 is mainly a passive UHF RFID IC which can be used in Battery Assisted Mode (BAP). It is compatible with all standard UHF RFID reader operating at 860MHz - 960MHz. It is powered either by a battery or by the RF field transmitted by the reader, which is received and rectified to generate a supply voltage for the device.

The AS2313 device is the first UHF RFID product embedding a full analog sensor interface including Switched Cap Amplifier (SCA) and Analog to Digital Converter (ADC) available for monitoring external sensors. Moreover, several integrated sensors are available to avoid any external devices. Temperature, Strain, Photodiode, Hall and Electrical Contact are available.

Due to its full compatibility with EPC Gen 2 protocol, the IC is OFF most of the time. It only wakes up once an RF field is available with enough power to supply the chip. First operation performed is a start-up sequence loading all configuration stored in NVM. The level of minimal power to operate is defined as sensitivity.

When a RF field is available with enough power to supply the chip, a power on reset (POR) signal rises and the tag wakes up. When the start-up or boot sequence is completed, the tag is ready to receive and demodulate commands from the interrogator.

In BAP mode, the tag wakes up as previously, when the RF field is available. The same sequence as above is performed.

Being compliant with EPC Global standards in UHF RFID applications, the maximum allowed time to perform the start-up sequence is 1.5ms. If permitted by the reader, it is however possible to increase by configuration the time allowed for the boot sequence to improve sensitivity. This feature is detailed later in register definition section.

A programmable 4-wire slave SPI bus is available for smart system integration. The SPI bus allows communications from a master SPI device and allows for control and data exchange between a reader and other components on a tag. All functionalities available from the RF reader are also available from the master SPI. The chip can be considered as symmetrical from a functional point of view. All NVM addresses and registers are available as absolute addresses (no banks) in SPI mode.

This device is in full compliance with ISO/IEC 18000-6 C, EPC™ Class-1 Generation-2, according to the following documents:

"ISO/IEC 18000-63 Information technology – Radio frequency identification for item management – Part 63: Parameters for air interface communications at 860 MHz to 960 MHz Type C"

"EPC Radio-Frequency Identity Protocols, Class-1 Generation-2 UHF RFID, Protocol for Communications at 860 Mhz - 960 MHz, Version 1.2.0" from EPCglobal Inc.

"EPCglobal Tag Data Standards, Version 1.10" from EPCglobal Inc.

EPC Optional Features supported

Optional Feature / Command	Supported	Comments
Kill Password	Yes	
Access Password	Yes	
Extended TID	No	Available upon request
User Memory	Yes	
Custom Commands	No	
Access Command	Yes	
Lock Command	Yes	
Kill Command	Yes	
BlockWrite Command	No	Available upon request
BlockErase Command	No	Available upon request
BlockPermalock Command	No	Available upon request
Error Specific Codes	Yes	
ASK and/or PSK Backscatter Modulation	Yes	Only ASK.
Recommissioning	No	
Battery Assisted Passive (BAP)	Yes	

Memory Map

The EEPROM is organized in four banks available for the user. The ISO/IEC 18000-6 type C and the EPC™ Class-1 Generation-2 specifications define four memory banks: Reserved, TID, UII/EPC, and User. The four memory banks are contiguous in EEPROM.

The EEPROM is divided as described in the following table:

Label			LogAddr	Bank			
USER7	0x	7	7				
USER6	0x	6	6				
USER5	0x	5	5				
USER4	0x	4	4	LICED			
USER3	0x	3	3	USER			
USER2	0x	2	2				
ACQ_TEMP	0x	1	1				
ACQ_SENS	0x	0	0				
TRIM0	0x	7	7				
RN16 SEED	0x	6	6				
SN0	0x	5	5				
SN1	Ох	4	4	TID			
SN2	0x	3	3	טוו			
XTID HEADER	Ох	2	2				
MDID+TMN	0x	1	1				
MDID+TMN	Ох	0	0				
CONFIG2	0x	10	16				
CONFIG1	0x	F	15				
CONFIG0	0x	Ε	14				
EPC0	0x	D	13				
EPC1	0х	С	12				
EPC2	0x	В	11				
EPC3	Ох	Α	10				
EPC4	0x	9	9				
EPC5	0x	8	8	EPC			
EPC6	0x	7	7				
EPC7	0x	6	6				
EPC8	0x	5	5				
EPC9	0x	4	4				
EPC10	0x	3	3				
EPC11	0x	2	2				
STORED_PC	0x	1	1				
STORED_CRC	0x	0	0				
ACCESS_PASSWD0	0x	3	3				
ACCESS_PASSWD1	0x	2	2	DECEDIVED			
KILL_PASSWD0	0x	1	1	RESERVED			
KILL_PASSWD1	0x	0	0				

Configuration Definition

In this section, all configuration and trim bits are defined. They are mainly controlling acquisition channel for both internal and external sensors.

Trim and configuration words are read from memory during the tag boot sequence and written in registers. Changing Configuration and trim words in memory then only take effect on next power up. However, configuration and trim registers may also be directly written via the SPI interface (see SPI section). In this latter case, changes are not kept in memory and are volatile.

Config0 - EPC bank address 0xE (14)

Bit	MSB 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	LSB 0
Name	7770	1110	N-J	SCA_EN_PLUS	SCA_CMFB_SEL	SCA_HIGH_GAIN	CH_DLY		מאות פה_רבוא	_	007_0EV_010EE0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OCA_GAIN	>	SCA_EARLY_EN	ADC_REF

All bits in CONFIG0 are defined and explained in the table below. IMPORTANT NOTICE: the SCA parameters are useful both when using external sensors and for the Hall internal sensor.

Name	Description
RFU	Reserved for future use
SCA_EN_PLUS	Enable enhanced Common mode Feedback in the SCA
SCA_CMFB_SEL	Select the type of Common mode Feedback to use in the SCA for AS3213.
	0: Discrete Time CMFB control
	1: Continuous Time CMFB control
SCA6_HIGH_GAIN	High gain mode:
	0: SCA GAIN is fixed by SCA_GAIN word
	1: Gain is 70 in natural if SCA GAIN='00'
CH_DLY<1:0>	Storage capacitance charge time:
_	Increase boot-sequence duration to optimize charging of storage
	capacitance. Allow to increase sensitivity if EPC start-up time is permitted
	by reader.
	'00': 50us (Default)
	'01': 200us
	'10': 400us
	'11': 800us
BRIDGE_LEN<1:0>	External sensor bias time
	'00': 780ns
	'01': 1170ns
	'10': 1560ns
	'11': 1950ns
SCA_CLK_CYCLES<1:0>	Number of SCA CLK cycles to accurately settle the switched cap amplifier
	'00': Only one cycle
	'01': 6 cycles
	'10': 8 cycles
	'11': 10 cycles
SCA_GAIN<1:0>	Gain of the Switched Cap Amplifier (SCA)
	'00': Gain is 20 in natural
	'01': Gain is 10 in natural
	'10': Gain is 2 in natural
	'11': Gain is 1 in natural
SCA_EARLY_EN	Power-up sequence control
	'0': Default behavior
	'1': SCA is powered earlier to give enough time to the reference to settle
	properly to increase accuracy, but also increase power consumption
ADC_REF	ADC input range
	'0': Reference are 0 and AVDD_REG=1.0V. ADC Input dynamic is 2V
	'1': Reference are 0.25xAVDD_REG and 0.75. ADC Input dynamic is 1V

Config1 - EPC bank address 0xF (15)

Bit	MSB 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	LSB 0
Name	mme RFU TS_MODE		SEN	ISOR_	_SELI	ЕСТ	SCA_F	SMPL	ADC_1	SMPL	ADC	C_FSMPL	ADC_N	ISMPL		

All bits in CONFIG1 are defined and explained in the table below. NB: SCA_FSMPL is useful both when using external sensors and for the Hall internal sensor.

Name	Description
RFU	Reserved for future use
TS_MODE<1:0>	Acquisition sequence configuration '00': External or internal sensor and temperature sensor acquisition are performed sequentially '01': Only external or internal sensor acquisition is performed '10': Only temperature acquisition is performed '11': No acquisition
SENSOR_SELECT<3:0>	'1000': External resistive sensor is connected to SCA. '1001': External capacitive sensor is connected to SCA. '0100': Internal Hall Sensor. '0010': Internal ALS Sensor. '0011': Internal Strain Sensor. '0110': Continuity sensor. '0thers': Not available
SCA_FSMPL<1:0>	SCA CLK frequency '00': 80kHz '01': 160kHz '10': 40kHz '11': 20kHz
ADC_TSMPL<1:0>	ADC sampling duration. '00': 1 ADC CLK cycle '01': 2 ADC CLK cycles '10': 4 ADC CLK cycles '11': 8 ADC CLK cycles
ADC_FSMPL<1:0>	ADC CLK frequency '00': 80kHz '01': 160kHz '10': 40kHz '11': 20kHz
ADC_NSMPL<1:0>	Number of samples converted in a row, for averaging. Data format is presented in the SENSOR_DATA section. '00': Only one conversion is performed '01': 2 conversions '10': 4 conversions '11': 8 conversions

Config2 - EPC bank address 0x10 (16)

Bit	MSB 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	777	פפון		CONT TIME	וארר_טואס	BIAC	UALL_GAIN		BRIDGE_SUPPLY_	SCA_HBIH_ACS		STRAIN_GAIN		RFU		ALS_GAIN

All bits in CONFIG2 are defined and explained in the table below. NB: SCA_HIGH_ACC is useful both when using external sensors and for the Hall internal sensor.

Name	Description
RFU	Reserved for future use.
CONT_TIME<1:0>	Time window for CONT sensor acquisition.
HALL_BIAS<1:0>	Internal Hall sensor bias current
	'00': Low
	'01': Medium
	'10': High
	'11': Very High
HALL_GAIN<1:0>	Internal Hall sensor acquisition channel gain
	'00': Low
	'01': Medium
	'10': High
	'11': Very High
BRIDGE_SUPPLY_MODE	External sensor supply mode control
	'0': External bridge is supplied for BRIDGE_LEN time
004 111011 400	'1': External bridge is supplied continuously during acquisition sequence
SCA_HIGH_ACC	Behavior of the AS3213 Switched Cap Amplifier (SCA)
	'0': Standard accuracy and offset
OTDAIN CAIN CO	'1': Enable high accuracy and low offset mode in SCA
STRAIN_GAIN<2:0>	Internal Strain sensor gain
	'000': Disabled '001': 1
	'010': 2
	'011': 3
	'100': 4
	'101': 5
	·110': 6
	·111': 7
ALS_GAIN<1:0>	Internal ALS sensor gain
_	'00': Disable
	'01': Low
	'10': Medium
	'11': High

Sensor and Temperature Data

Sensor and Temperature data are stored in register

at USER memory address 0 and 1 respectively. They are accessible thanks to a simple Read command from the reader. Data acquired are presented as shown below depending on value of the ADC_NSMPL used for averaging (see Config1 word). All samples taken are added and written in the register as well as the "power_ok" indicator and the number of samples. In this way the interrogator can perform averaging in the way wanted by the application.

PWR_OK is a status bit indicating that the power supply stayed into the wanted range during measurement ensuring accuracy and precision of the measurement within the specification.

	NSMPL	PWR_OK		ACQ_SENS / ACQ_TEMP DATA											
# of samples	15:14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	NSMPL	PWR_OK				D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
2	NSMPL	PWR_OK			D9	D8	D7	D6	D5	D4	D3	D2	D1	D0,	D-1
4	NSMPL	PWR_OK		D9	D8	D7	D6	D5	D4	D3	D2	D1	D0,	D-1	D-2
8	NSMPL	PWR OK	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	D-1	D-2	D-3

SPI Interface

The SPI interface gives access to memory and registers, that is:

- EEPROM physical memory,
- Configuration and Trim registers,
- Sensor data registers (read-only),
- MDID, XTID_HEADER, STORED_CRC (read-only).

SPI gets the priority vs RF communication as soon as SPI-EN is set high.

Lock status programmed through EPC lock commands is ignored by SPI, as well as the tag status. All memory locations and registers are accessible, even when the tag is killed.

SPI Mode

The SPI_EN pad, when tied to 1, enables the SPI interface. In SPI mode, the clock and reset of the chip's digital part must be provided through EXT_CLK and EXT_NRESET pads.

EXT_CLK rate must be set to 2.56 MHz. EXT_NRESET must be asserted low to properly reset the chip. The SPI mode invalidates the use of the RF reader.

SPI_EN	Description
0	SPI interface is disabled
	RF reader is enabled
	Clock and reset are provided by
	internal oscillator and on-chip POR.
1	SPI interface is enabled
	RF reader is disabled
	Clock and reset are provided by
	EXT_CLK and EXT_NRESET

SPI Bus

The SPI interface is the standard 4-wire interface:

SPI interface	Description	Pin direction	Comments				
MISO	Slave Data Output	Output	Driven low in RF mode				
IVIIOO	Slave Data Output	Output	Tri-stated in SPI mode when NCS=1				
MOSI	Slave Data Input	Input	Pad pull down always activated				
NCS	Chip Select	Input	Active low. Pad pull down always activated				
SCK	Serial Clock	Input	Pad pull down always activated				

- NCS: device selection. The device is selected when NCS is low. When unused, the NCS pad is pulled down.
- SCK : Serial clock. The Serial Clock is driven by the External Master SPI. Due to internal resynchronization, the SCK rate must be less than 128kHz.

SCK frequency < 128kHz

MOSI: Slave Data input. When unused, a pull-down keeps the signal at 0. MISO: Slave Data Output. When unused in SPI mode, the output is set High Z.

SPI register map

REGISTER	ADDR	RD/WR
TEST_REG	16'h0000	RD/WR
STORED_CRC_REG	16'h0001	RD ONLY
MDID_MSB_REG	16'h0002	RD ONLY
MDID_LSB_REG	16'h0003	RD ONLY
XTID_HEADER_REG	16'h0004	RD ONLY
SENS_REG	16'h0005	RD ONLY
TEMP_REG	16'h0006	RD ONLY
TRIMO_REG	16'h0007	RD/WR
CONFIGO_REG	16'h0008	RD/WR
CONFIG1_REG	16'h0009	RD/WR
CONFIG2_REG	16'h000A	RD/WR

Access to registers are done using the READ_REG and WRITE_REG commands (See section on SPI commands) and the above register map.

The TEST_REG register drives the AFE test mode and the NVM Test pins (Refer to Test section). TEST_REG = 16'h0000 selects the normal functional mode. This is the default value of the TEST_REG register on power up.

Bit 15 of TEST_REG register, when set, is used to trig a new acquisition.

The address field of TEST_REG register is 0x00. This register is not included in the EPC memory map and can be written via the WRITE_REG instruction only.

SPI Commands

SPI available commands are:

Instruction	Description	Instruction	Comments	Frame length
		code		
RDSR	Read Status	0x00000101	Returns the 8-bit status	8 + 8 bits
	Register		register	
WRITE	Write to	0x00000010	Writes a 16-bit word in	8 + 8 + 16 bits
	memory array		memory array	
READ	Read to	0x00000011	Reads a 16-bit word in	8 + 8 + 16 bits
	memory array		memory array	
WRITE_REG	Write to	0x10000010	Writes a 16-bit word in	8 + 8 + 16 bits
	Registers		register	
READ_REG	Read to	0x10000011	Reads a 16-bit word from	8 + 8 + 16 bits
	Registers		register	

Available commands are listed above. If an invalid code command is received, the device automatically enters a Wait State until it is deselected (NCS high). Command code is 8-bit length. Addresses are 8-bit length, data are always 16-bit.

Commands available are detailed below.

WRITE

WRITE can be performed only if a WRITE is not already in progress in memory. Once the 8 bits of the WRITE command have been sent, the SPI device waits for address and data. They are shifted-in, MSB first. After this sequence, the device enters a wait state, waiting for the chip select to be driven high. The WRITE is interrupted if the NCS line is deselected during data or address transfer.

READ

READ can be performed if a WRITE is not in progress. Once the 8 bits of the READ command have been sent, the device waits for an 8-bit address. Address is shifted-in MSB first. Data is shifted-out MSB first. The READ is interrupted if the NCS line is deselected during the transfer.

RDSR

RDSR returns the Status Register value. This instruction can also be executed if a memory WRITE is in progress and is specially intended to report the end of the write. Once the 8 bits of the RDSR command have been sent, the 8-bit Status register is shifted-out, MSB first.

The RDSR returns the WREN value, and the status of the WRITE in Progress (WIP).

	7	6	5	4	3	2	1	0
RDSR			RFU					WIP

WIP:

1: Write is in Progress, 0: No write in progress

The READ is interrupted if the NCS line is deselected during the transfer.

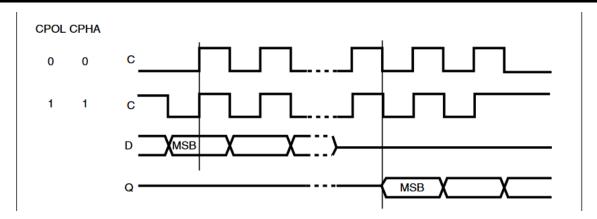
WRITE REG

The WRITE_REG enables the SPI to directly access the CONFIG0 to CONFIG1, TRIM0 and TEST registers in write mode. Writing configuration and trim registers using WRITE_REG instruction takes immediate effect. At the opposite, writing configuration and trim using WRITE instruction has no immediate impact since new values are written into memory. These changes will be effective on next power up after these data will be downloaded from memory into registers.

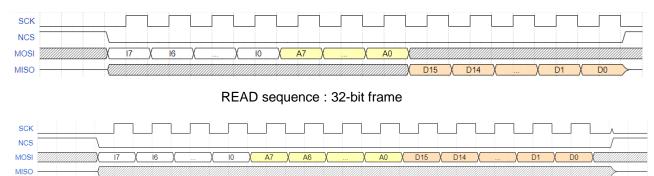
Addresses of registers using the WRITE_REG command are listed below.

READ_REG

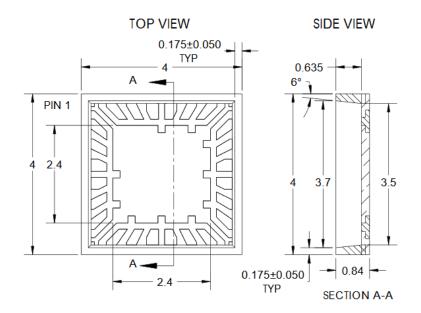
The READ_REG enables the SPI to directly access the above registers in read mode. All registers are readable.

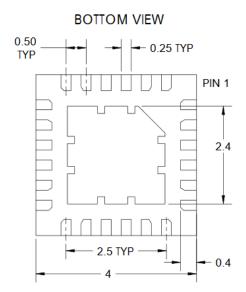

SPI Protocol

The SPI device performs 8-bit transfers, MSB first. It can be driven by any master device running in the following modes:


CPOL=0, CPHA=0, CPOL=1, CPHA=1.

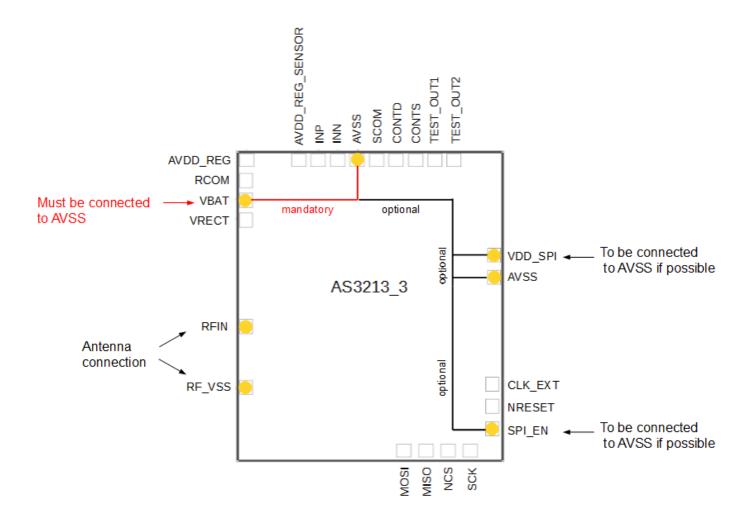
For these 2 modes, input data on MOSI is latched in on the rising edge of SCK and output data (MISO) is available from the falling edge of clock, as shown below.


SPI frames have length multiples of 8 bits.



WRITE sequence or WRITE_REG sequence : 32-bit frame

Package information



Bare Dies Information

Bumps (DXF available on demand)

Main information concerning bumps are listed below:

- Wafer Thickness : 250µm
- Pads size:70x77µm²
- Passivation opening: 70µmx77µm
- Bumps type: Accu bumps (Au)
- Bumps thickness: 45µm
- Bumps diameter: 80µm

Product Support

www.asygn.com support@asygn.com